首页> 外文OA文献 >Hybrid Global Optimization Algorithms for Protein Structure Prediction: Alternating Hybrids
【2h】

Hybrid Global Optimization Algorithms for Protein Structure Prediction: Alternating Hybrids

机译:蛋白质结构预测的混合全局优化算法:交替杂交

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hybrid global optimization methods attempt to combine the beneficial features of two or more algorithms, and can be powerful methods for solving challenging nonconvex optimization problems. In this paper, novel classes of hybrid global optimization methods, termed alternating hybrids, are introduced for application as a tool in treating the peptide and protein structure prediction problems. In particular, these new optimization methods take the form of hybrids between a deterministic global optimization algorithm, the αBB, and a stochastically based method, conformational space annealing (CSA). The αBB method, as a theoretically proven global optimization approach, exhibits consistency, as it guarantees convergence to the global minimum for twice-continuously differentiable constrained nonlinear programming problems, but can benefit from computationally related enhancements. On the other hand, the independent CSA algorithm is highly efficient, though the method lacks theoretical guarantees of convergence. Furthermore, both the αBB method and the CSA method are found to identify ensembles of low-energy conformers, an important feature for determining the true free energy minimum of the system. The proposed hybrid methods combine the desirable features of efficiency and consistency, thus enabling the accurate prediction of the structures of larger peptides. Computational studies for met-enkephalin and melittin, employing sequential and parallel computing frameworks, demonstrate the promise for these proposed hybrid methods.
机译:混合全局优化方法试图结合两个或多个算法的有益特征,并且可能是解决具有挑战性的非凸优化问题的有力方法。在本文中,引入了称为混合交替的新型新型混合全局优化方法,以作为治疗肽和蛋白质结构预测问题的工具。特别是,这些新的优化方法采用确定性全局优化算法αBB与基于随机方法的构象空间退火(CSA)之间的混合形式。 αBB方法作为一种经过理论验证的全局优化方法,具有一致性,因为它可以保证对两次连续可微分的约束非线性规划问题收敛到全局最小值,但是可以受益于与计算相关的增强。另一方面,尽管独立的CSA算法缺乏理论上的收敛性保证,但其效率很高。此外,发现αBB方法和CSA方法都可以识别低能构象体的集合体,这是确定系统的真正自由能最小值的重要特征。拟议的混合方法结合了效率和一致性的理想特征,从而能够准确预测较大肽的结构。对甲基脑啡肽和蜂毒肽的计算研究,采用顺序和并行计算框架,证明了这些拟议的混合方法的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号